Cobots Understanding Skills Programmed by Demonstration

Isacco Zappa
isacco.zappa@polimi.it
Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria
Milan, Italy

Karinne Ramirez-Amaro
karinne@chalmers.se
Chalmers University of Technology, Department of
Electrical Engineering
Gothenburg, Sweden

ABSTRACT

Traditional robot programming requires skilled operators, contrast-
ing with small and medium-sized enterprises’ lack of robotics exper-
tise. This abstract presents the outcomes in enriching Programming
by Demonstration to encode the meaning that the operator asso-
ciates with the skill being demonstrated. Therefore, the depiction
of skills by the operator and the robot can be levelled, enabling a
more effective teaching of actions and a better interpretability of
the robot’s inner reasoning process. Given the increased dexterity
of dual-arm robots in complex tasks, the current efforts to enable
multi-agent systems to learn skill semantics through demonstra-
tion are discussed. Finally, the abstract outlines the challenges to
be addressed to provide the robots with an understanding of the
constraints given by a shared workspace and the synergies required
for certain skills.

KEYWORDS

Programming by Demonstration, Intuitive Robot Programming,
Semantic Understanding of Skills

ACM Reference Format:

Isacco Zappa, Maximilian Diehl, Karinne Ramirez-Amaro, and Andrea Maria
Zanchettin. 2018. Cobots Understanding Skills Programmed by Demonstra-
tion. In Proceedings of Workshop@HAI 2023: The Importance of Human Factors
for Trusted Human-Robot Collaborations (Workshop@HAI 2023). ACM, New
York, NY, USA, 2 pages.

1 BACKGROUND

Despite the effort made by manufacturers in the development of in-
tuitive programming interfaces, an expert operator is still required
to program a collaborative robot. The problem becomes paramount
for small and medium-sized enterprises, which usually lack such
expertise in robotics.

Programming by Demonstration [1] provides the operator with a
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Figure 1: Example of a semantic representation of the state
of the environment built from sensor data.

more accessible programming method that does not involve coding.
The underlying concept is that the robot can learn how to execute
a task from a demonstration. The demonstration spans from pure
observations to kinesthetic demonstrations. The latter consists of
the operator physically moving the robot along the execution of the
skill. A key enabling technology is cobot’s hand-guiding, devised by
robot manufacturers to save movement waypoints and record tra-
jectories. However, during the demonstration, the operator provides
the robot with information about how to execute an action and the
meaning of the action itself. Nevertheless, the robot still depicts the
demonstration as a series of movements. Capturing the meaning
of a skill from a demonstration and a proper representation of this
knowledge would not only provide the robot with a certain degree
of autonomy but also make its reasoning interpretable.

Semantics is the study of the meaning that we give to the entities
around us, their properties and relations, and how we structure
this knowledge [5]. Semantics applied to robotics enable the robot
to build abstractions from the raw data recorded by its sensor to
represent the state of the environment as a list of first-order logic
predicates. Providing the robot with the capability to build a seman-
tic description of the scene enhances the interpretability of how
the robot perceives the environment, resulting in more intuitive
and meaningful interactions with the operator. An example of a

state description with predicates can be seen in Figure 1.

Recent works propose to exploit this representation to extrapolate
the meaning of the demonstrated skill in terms of its preconditions
and effects from basic set operations on the semantic state of the
system before and after the demonstration [6]. Such knowledge is
then formalized in PDDL [2]. An example can be seen in Figure 2,
with the resultant encoding of the skill in PDDL shown in Listing 1.
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Figure 2: Semantic representation of the state of the environ-
ment before and after the demonstration.
Listing 1: PDDL encoding of the demonstrated skill.
(:action skill_o0
:parameters (
?c¢l ?¢2 ?¢3 - cube
)
:precondition (and
(is_held_by ?c1 ?g) (is_close_to ?c2 ?c3)
)
:effect (and
(is_gripper_open ?g) (is_on_top ?cl ?c2)
(is_on_top ?cl ?c3) (mnot (is_held_by ?cl ?g))

?g - gripper

Moreover, the study proposes a low-level skill encoding that is

capable of untying the skill execution to the specific settings in
which the demonstration took place, thus enabling the execution
of the skill in a different scenario.
The operator is then provided with a method to teach by demonstra-
tion the basic modular skills he/she thinks that the robot must know
for the specific job. Finally, after specifying the goal, a symbolic
planner can use the PDDL skill models to compute the sequence of
skills required to perform the task.

2 TEACHING SKILLS IN A MULTI-AGENT
SCENARIO

A single robotic manipulator may not be appropriate for some tasks
due to its workspace constraints and intrinsic limitations. Indeed,
some tasks, such as screwing the cap of a bottle or lifting a tray
from two handles, cannot be tackled by a single manipulator. Dual-
arm robotic manipulators brought a significant innovation in the
field of industrial robotics. By emulating the human structure and
coordinated movements, this type of robot shows a higher level of
dexterity and adaptability to a broader range of skills concerning its
single-arm counterpart. Dual-arm robots have gathered the interest
of a niche in the industry, where high productivity in complex tasks
is required, with precision and speed [4].

Our current work focus on enabling a multi-agent system, such as
dual-arm robots, to learn the semantics of skills taught by demon-
stration. The challenges to be tackled are manifold. The basic formu-
lation of PDDL is not appropriate for multi-agent planning. Indeed,
it is possible to define the entities in the scene to account for both

Zappa et al.
INIT GOAL
o’@-i I—O\e e’©-| |—@\o
. v/ 4 J
m' 'm mm
I I I I

Pick(Right_Arm,

Place(Right_Arm,
Blue_Cube)

Pick(Left_Arm,
Green_Cube)

Place(Left_Arm,
Green_Cube)

Blue_Cube)

Pick(Right_Arm,
Blue_Cube)

Pick(Left_Arm,
Green_Cube)

Figure 3: From top to bottom: Initial and Goal condition of the
planning problem, standard PDDL plan, Multi-Agent PDDL
plan.
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Figure 4: Unfeasible plans that may be computed from a bad
description of a shared workspace and skills synergies.

the robot arms. However, the planner would not generate a plan
where actions are scheduled in parallel, thus not exploiting the
advantages of a dual-arm robot coordinated motion. Figure 3 visu-
alize the problem. Moreover, the robots must be provided with an
understanding of space constraints and skills synergies to avoid
unfeasible plans to be computed by the planner, such as in the
examples depicted in Figure 4.

The pipeline to address the issues has already been defined. The
system will employ the Multi-Agent PDDL (MA-PDDL) formulation
introduced in [3]. Space constraints and actions that must be sched-
uled in parallel, such as lifting a tray by holding the two handles,
will be addressed with additional PDDL requirements in the skill
descriptors.
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